Some Convex Functions Based Measures of Independence and Their Application to Strange Attractor Reconstruction
نویسندگان
چکیده
The classical information-theoretic measures such as the entropy and the mutual information (MI) are widely applicable to many areas in science and engineering. Csiszar generalized the entropy and the MI by using the convex functions. Recently, we proposed the grid occupancy (GO) and the quasientropy (QE) as measures of independence. The QE explicitly includes a convex function in its definition, while the expectation of GO is a subclass of QE. In this paper, we study the effect of different convex functions on GO, QE, and Csiszar’s generalized mutual information (GMI). A quality factor (QF) is proposed to quantify the sharpness of their minima. Using the QF, it is shown that these measures can have sharper minima than the classical MI. Besides, a recursive algorithm for computing GMI, which is a generalization of Fraser and Swinney’s algorithm for computing MI, is proposed. Moreover, we apply GO, QE, and GMI to chaotic time series analysis. It is shown that these measures are good criteria for determining the optimum delay in strange attractor reconstruction.
منابع مشابه
Inequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملComputing geometric Lorenz attractors with arbitrary precision
The Lorenz attractor was introduced in 1963 by E. N. Lorenz as one of the first examples of strange attractors. However Lorenz’ research was mainly based on (non-rigourous) numerical simulations and, until recently, the proof of the existence of the Lorenz attractor remained elusive. To address that problem some authors introduced geometric Lorenz models and proved that geometric Lorenz models ...
متن کاملAn Optimization Model for Financial Resource Allocation Towards Seismic Risk Reduction
This paper presents a study on determining the degree of effectiveness of earthquake risk mitigation measures and how to prioritize such efforts in developing countries. In this paper a model is proposed for optimizing funds allocation towards risk reduction measures (building retrofitting) and reconstruction process after potential earthquakes in a regional level. The proposed model seeks opti...
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 13 شماره
صفحات -
تاریخ انتشار 2011